Quiver Representations, Quiver Varieties and Combinatorics Bologna, May 2023

Quiver Representations in Topological Data Analysis (TDA)

Steve Oudot

References

• 1-parameter persistence theory:

O. (2015): Persistence Theory: from Quiver Representations to Data Analysis.

• Multi-parameter persistence theory:

Botnan, Lesnick (2022): An Introduction to Multi-Parameter Persistence.

• Algorithmic aspects:

Dey, Wang (2022): Computational Topology for Data Analysis.

• Statistical aspects:

Chazal, Michel (2021): An Introduction to Topological Data Analysis.

Connection to Machine Learning:

Hensel, Moor, Rieck (2021): A Survey of Topological Machine Learning Methods.

• Software: Gudhi, PHAT, Ripser, Eirene, Persistable, ...

Data featurization

Topological Data Analysis pipeline

Example of application: shape segmentation

Goal: segment 3d shapes based on examples Approach:

- train a predictor on **barcodes** extracted from the training shapes
- apply the predictor to **barcodes** extracted from the query shape

(train data) トレイエ (test data) イイイド

Example of application: shape segmentation

Goal: segment 3d shapes based on examples Approach:

- train a predictor on **barcodes** extracted from the training shapes
- apply the predictor to **barcodes** extracted from the query shape

Error rates	(%)):
-------------	-----	----

	TDA features	geom/stat features	TDA + geom/stat features
Human	26.0	21.3	11.3
Airplane	27.4	18.7	9.3
Ant	7.7	9.7	1.5
FourLeg	27.0	25.6	15.8
Octopus	14.8	5.5	3.4
Bird	28.0	24.8	13.5
Fish	20.4	20.9	7.7

[Carrière, O., Ovsjanikov]

persistence module $M = HF : P \to \mathsf{vect}_k$ (singular homology)

data

filtration $F: P \subseteq \mathbb{R}^d \to \mathsf{Top}$ (sublevel sets of distance to data)

 (P, \leq) a poset (usually $(\mathbb{Z}^d, \leq_{\prod})$ or $(\mathbb{R}^d, \leq_{\prod})$)

Filtration: functor $(P, \leq) \rightarrow \mathsf{Top}$

- ▶ typically, $F(t) := f^{-1}((-\infty, t])$ for some P-valued function f
- $\blacktriangleright F(t) \subseteq F(u) \text{ forall } t \leq u \in P$

 (P, \leq) a poset (usually $(\mathbb{Z}^d, \leq_{\prod})$ or $(\mathbb{R}^d, \leq_{\prod})$)

Filtration: functor $(P, \leq) \rightarrow \mathsf{Top}$

▶ typically, $F(t) := f^{-1}((-\infty, t])$ for some P-valued function f

▶
$$F(t) \subseteq F(u)$$
 forall $t \leq u \in P$

$$f: \| \mathbb{R}^n \to P = \mathbb{R} \\ y \mapsto \min_{x \in X} \| y - x \|_2$$

$$F(t) := f^{-1} \left((-\infty, t] \right)$$
$$= \bigcup_{x \in X} B(x, t)$$

 (P, \leq) a poset (usually $(\mathbb{Z}^d, \leq_{\prod})$ or $(\mathbb{R}^d, \leq_{\prod})$)

Filtration: functor $(P, \leq) \rightarrow \mathsf{Top}$

▶ typically, $F(t) := f^{-1}((-\infty, t])$ for some P-valued function f

▶
$$F(t) \subseteq F(u)$$
 forall $t \leq u \in P$

$$f: \left| \begin{array}{c} \mathbb{R}^n \to P = \mathbb{R} \\ y \mapsto \min_{x \in X} \|y - x\|_2 \end{array} \right|$$

$$F(t) := f^{-1} \left((-\infty, t] \right)$$
$$= \bigcup_{x \in X} B(x, t)$$

 (P, \leq) a poset (usually $(\mathbb{Z}^d, \leq_{\prod})$ or $(\mathbb{R}^d, \leq_{\prod})$)

Filtration: functor $(P, \leq) \rightarrow \mathsf{Top}$

▶ typically, $F(t) := f^{-1}((-\infty, t])$ for some P-valued function f

▶
$$F(t) \subseteq F(u)$$
 forall $t \leq u \in P$

$$f: \| \mathbb{R}^n \to P = \mathbb{R} \\ y \mapsto \min_{x \in X} \| y - x \|_2$$

$$F(t) := f^{-1} \left((-\infty, t] \right)$$
$$= \bigcup_{x \in X} B(x, t)$$

 (P, \leq) a poset (usually $(\mathbb{Z}^d, \leq_{\prod})$ or $(\mathbb{R}^d, \leq_{\prod})$)

Filtration: functor $(P, \leq) \rightarrow \mathsf{Top}$

▶ typically, $F(t) := f^{-1}((-\infty, t])$ for some P-valued function f

▶
$$F(t) \subseteq F(u)$$
 forall $t \leq u \in P$

$$f: \left| \begin{array}{c} \mathbb{R}^n \to P = \mathbb{R} \\ y \mapsto \min_{x \in X} \|y - x\|_2 \end{array} \right|$$

$$F(t) := f^{-1} \left((-\infty, t] \right)$$
$$= \bigcup_{x \in X} B(x, t)$$

 (P, \leq) a poset (usually $(\mathbb{Z}^d, \leq_{\prod})$ or $(\mathbb{R}^d, \leq_{\prod})$)

Filtration: functor $(P, \leq) \rightarrow \mathsf{Top}$

▶ typically, $F(t) := f^{-1}((-\infty, t])$ for some P-valued function f

▶
$$F(t) \subseteq F(u)$$
 forall $t \leq u \in P$

Example: offsets filtration of $X \subseteq \mathbb{R}^n$:

$$f: \left| \begin{array}{c} \mathbb{R}^n \to P = \mathbb{R} \\ y \mapsto \min_{x \in X} \|y - x\|_2 \end{array} \right|$$

 $F(t) := f^{-1} \left((-\infty, t] \right)$ $= \bigcup_{x \in X} B(x, t)$

 (P, \leq) a poset (usually $(\mathbb{Z}^d, \leq_{\prod})$ or $(\mathbb{R}^d, \leq_{\prod})$)

Filtration: functor $(P, \leq) \rightarrow \mathsf{Top}$

▶ typically, $F(t) := f^{-1}((-\infty, t])$ for some P-valued function f

▶
$$F(t) \subseteq F(u)$$
 forall $t \leq u \in P$

Example: offsets filtration of $X \subseteq \mathbb{R}^n$:

$$f: \| \mathbb{R}^n \to P = \mathbb{R} \\ y \mapsto \min_{x \in X} \| y - x \|_2$$

 $F(t) := f^{-1} \left((-\infty, t] \right)$ $= \bigcup_{x \in X} B(x, t)$

 (P, \leq) a poset (usually $(\mathbb{Z}^d, \leq_{\prod})$ or $(\mathbb{R}^d, \leq_{\prod})$)

Filtration: functor $(P, \leq) \rightarrow \mathsf{Top}$

▶ typically, $F(t) := f^{-1}((-\infty, t])$ for some P-valued function f

▶
$$F(t) \subseteq F(u)$$
 forall $t \leq u \in P$

$$f: | \mathbb{R}^n \to P = \mathbb{R} \\ y \mapsto \min_{x \in X} \|y - x\|_2$$

$$F(t) := f^{-1} \left((-\infty, t] \right)$$
$$= \bigcup_{x \in X} B(x, t)$$

 (P, \leq) a poset (usually $(\mathbb{Z}^d, \leq_{\prod})$ or $(\mathbb{R}^d, \leq_{\prod})$)

Filtration: functor $(P, \leq) \rightarrow \mathsf{Top}$

- ▶ typically, $F(t) := f^{-1}((-\infty, t])$ for some P-valued function f
- ▶ $F(t) \subseteq F(u)$ forall $t \leq u \in P$

Example: offsets filtration of $X \subseteq \mathbb{R}^n$:

$$f: \left| \begin{array}{c} \mathbb{R}^n \to P = \mathbb{R} \\ y \mapsto \min_{x \in X} \|y - x\|_2 \end{array} \right|$$

 $F(t) := f^{-1} \left((-\infty, t] \right)$ $= \bigcup_{x \in X} B(x, t)$

 (P, \leq) a poset (usually $(\mathbb{Z}^d, \leq_{\prod})$ or $(\mathbb{R}^d, \leq_{\prod})$)

Filtration: functor $(P, \leq) \rightarrow \mathsf{Top}$

▶ typically, $F(t) := f^{-1}((-\infty, t])$ for some P-valued function f

▶
$$F(t) \subseteq F(u)$$
 forall $t \leq u \in P$

▶ for computational purposes, take $F \colon P \to \mathsf{Simp}$

Example: Vietoris-Rips filtration of $X \subseteq \mathbb{R}^n$:

$$f: | 2^X \to P = \mathbb{R} \\ \{x_0, \cdots, x_k\} \mapsto \max_{0 \le i < j \le k} ||x_i - x_j||_2$$

F(t) =flag complex of intersection graph

of
$$\bigcup_{x \in X} B(x, t/2)$$

Other examples (any combination of the following)

density estimators

single-source distances

others:

- non-linear projections
- curvature measures
- PDE solutions (heat, wave)
- etc.

Persistence modules

 (P, \leq) a poset (usually $(\mathbb{Z}^d, \leq_{\prod})$ or $(\mathbb{R}^d, \leq_{\prod})$), k a field

Persistence module: functor $(P, \leq) \rightarrow \text{vect}_k$ (pointwise finite-dimensional, or pfd)

 (P, \leq) a poset (usually $(\mathbb{Z}^d, \leq_{\prod})$ or $(\mathbb{R}^d, \leq_{\prod})$), k a field

Persistence module: functor $(P, \leq) \rightarrow \text{vect}_k$ (pointwise finite-dimensional, or pfd)

Interval: $I \subseteq P$ that is:

- convex
$$(s, t \in I \Longrightarrow u \in I \forall s \le u \le t)$$

- connected $(s, t \in I \Longrightarrow \exists \{u_i\}_{i=0}^r \subseteq I \text{ s.t. } s = u_0 \le u_1 \ge \cdots \ge u_r =$

Interval module: indicator module k_I of an interval $I \subseteq P$

$$\boldsymbol{k}_{I}(t) = \begin{cases} \boldsymbol{k} \text{ if } t \in I \\ 0 \text{ otherwise} \end{cases}$$
$$\boldsymbol{k}_{I}(s \leq t) = \begin{cases} \text{ id}_{\boldsymbol{k}} \text{ if } s, t \in I \\ 0 \text{ otherwise} \end{cases}$$

note: $\operatorname{End}(k_I) \simeq k$

t)

Persistence modules

Interval modules are **described by their support**:

- complete geometric descriptor
- ▶ efficient to encode (small / simple dictionary)
- readily interpretable (for data exploration)
- ▶ easy to vectorize (for Machine Learning)
- enjoy stability properties (for statistics)

Interval module: indicator module k_I of an interval $I \subseteq P$

$$\boldsymbol{k}_{I}(t) = \begin{cases} \boldsymbol{k} \text{ if } t \in I \\ 0 \text{ otherwise} \end{cases}$$
$$\boldsymbol{k}_{I}(s \leq t) = \begin{cases} \text{ id}_{\boldsymbol{k}} \text{ if } s, t \in I \\ 0 \text{ otherwise} \end{cases}$$

note: $\operatorname{End}(k_I) \simeq k$

1-parameter persistence modules

Thm [Gabriel][Auslander][Ringel][Webb][Crawley-Boevey] For any $P \subseteq \mathbb{R}$ and any $M : (P, \leq) \rightarrow \text{vect}_{k}$:

$$M \simeq \bigoplus_{j \in J} \mathbf{k}_{I_j}$$

where each $\operatorname{End}(k_{I_i})$ is local

Metric viewpoint: interleaving distance

Given $M, N: (\mathbb{R}, \leq)
ightarrow \mathsf{vect}_k$,

- morphism: natural transformation $M \Rightarrow N$
- isomorphism: pair of morphisms $M \stackrel{\phi}{\Rightarrow} N$ and $N \stackrel{\psi}{\Rightarrow} M$ such that: $\psi \left(\begin{array}{c} \\ \end{array} \right) \phi$

Metric viewpoint: interleaving distance

Given $M, N: (\mathbb{R}, \leq)
ightarrow \mathsf{vect}_k$,

- morphism: natural transformation $M \Rightarrow N$
- isomorphism: pair of morphisms $M \stackrel{\phi}{\Rightarrow} N$ and $N \stackrel{\psi}{\Rightarrow} M$ such that: $\psi \left(\bigwedge \right) \phi$
- ε -isomorphism: pair of morphisms $M \stackrel{\phi}{\Rightarrow} N[\varepsilon]$ and $N \stackrel{\psi}{\Rightarrow} M[\varepsilon]$ such that:

where $M[\varepsilon](t) := M(t + \varepsilon)$ and $\phi[\varepsilon](t) := \phi(t + \varepsilon)$

• interleaving distance: $d_i(M, N) := \inf \{ \varepsilon \mid M, N \varepsilon \text{-isomorphic} \}$

 \mathcal{M}

Metric viewpoint: interleaving distance

Given $M, N : (\mathbb{R}, \leq) \rightarrow \operatorname{vect}_k$,

- morphism: natural transformation $M \Rightarrow N$
- isomorphism: pair of morphisms $M \stackrel{\phi}{\Rightarrow} N$ and $N \stackrel{\psi}{\Rightarrow} M$ such that: $\psi \begin{pmatrix} \\ \\ \end{pmatrix} \phi$
- ε -isomorphism: pair of morphisms $M \stackrel{\phi}{\Rightarrow} N[\varepsilon]$ and $N \stackrel{\psi}{\Rightarrow} M[\varepsilon]$ such that:

where $M[\varepsilon](t) := M(t + \varepsilon)$ and $\phi[\varepsilon](t) := \phi(t + \varepsilon)$

• interleaving distance: $d_i(M, N) := \inf \{ \varepsilon \mid M, N \varepsilon \text{-isomorphic} \}$

 \mathcal{M}

[7] **Prop:**
$$\forall f, g : X \to \mathbb{R}$$
,
 $d_i(HF, HG) \leq ||f - g||_{\infty}$
[7] **Thm:** [Lesnick]
 d stable as above $\Rightarrow d \leq d_i$

 $\implies M[2\varepsilon$ M[arepsilon] = M $\phi[\varepsilon]$ $\psi[arepsilon]$ $\Rightarrow N[2\varepsilon]$ $N[\varepsilon]$

Metric viewpoint: bottleneck distance

Given
$$M = \bigoplus_{a \in A} M_a, N = \bigoplus_{b \in B} N_b : (\mathbb{R}, \leq) \rightarrow \operatorname{vect}_k,$$

• morphism: natural transformation $M \Rightarrow N$

• isomorphism: pair of morphisms $M \stackrel{\phi}{\Rightarrow} N$ and $N \stackrel{\psi}{\Rightarrow} M$ such that: ψ

bottleneck
•
$$\varepsilon$$
-isomorphism: pair of morphisms $M \stackrel{\phi}{\Rightarrow} N[\varepsilon]$ and $N \stackrel{\psi}{\Rightarrow} M[\varepsilon]$ such that:

M

Metric viewpoint: isometry

Given
$$M = \bigoplus_{a \in A} M_a, N = \bigoplus_{b \in B} N_b : (\mathbb{R}, \leq) \to \operatorname{vect}_k,$$

• morphism: natural transformation $M \Rightarrow N$

• isomorphism: pair of morphisms $M \stackrel{\phi}{\Rightarrow} N$ and $N \stackrel{\psi}{\Rightarrow} M$ such that: ψ

bottleneck • ε -isomorphism: pair of morphisms $M \stackrel{\phi}{\Rightarrow} N[\varepsilon]$ and $N \stackrel{\psi}{\Rightarrow} M[\varepsilon]$ such that:

Thm:
$$d_i = d_b$$

where $M[\varepsilon](t) := M(t + \varepsilon)$ and $\phi[\varepsilon](t) := \phi(t + \varepsilon)$ bottleneck

• **bottleneck distance**: $d_b(M, N) := \inf \{ \varepsilon \mid M, N \varepsilon \text{-isomorphic} \}$

Wrap-up on 1-parameter persistence modules

Structure theorems

- complete classification of pfd persistence modules via their barcodes
- efficient algorithms for barcode computation

Isometry theorem

- barcodes as complete metric invariants for persistence modules \rightarrow combinatorial algorithms for distance computation
- ► space of barcodes as a space of measures
 - \rightarrow bounds on intrinsic curvature
 - \rightarrow toolbox for statistics
 - \rightarrow vectorizations and kernels for ML

Multi-parameter persistence... what for?

- study joint variables (e.g. treatment efficacy vs. risk)
- increase feature sensitivity (by enhanced feature aggregation)

Thm: [Boyer, Curry, Mukherjee, Turner] [Ghrist, Levanger, Mai] The map $X \mapsto \{ \text{Bar} \langle \cdot, w \rangle |_X \}_{w \in \mathbb{S}^{n-1}}$ is injective on the class of compact subanalytic sets $X \subset \mathbb{R}^n$.

Q: can we reduce to finitely many directions using multi-parameter persistence?

Multi-parameter persistence modules

Thm [Botnan, Crawley-Boevey] For any poset (P, \leq) and functor $M : (P, \leq) \rightarrow \text{vect}_{k}$: $M \simeq \bigoplus_{j \in J} M_{j}$ where each $\text{End}(M_{j})$ is local

Multi-parameter persistence modules

 $V_{1} \underbrace{\begin{array}{c|c} f_{1} \\ V_{1} \\ V_{2} \\ V_{3} \\ V_{4} \\ V_{5} \\ V_{5} \\ f_{1} \\ f_{5} \\ f_{5}$

non-thin summands

wild-type

Multi-parameter persistence modules

wild-type

Example: two-parameter clustering

co-density

co-density

14

Bottomline: look for incomplete invariants of persistence modules that are:

- ▶ as strong as possible (μ stronger than ν if $\mu(M) = \mu(N) \Rightarrow \nu(M) = \nu(N)$)
- ▶ manageable to compute (polynomial time in the input filtration size)
- \blacktriangleright stable w.r.t. perturbations of the modules in the interleaving distance d_i
- ▶ interpretable in terms of the module's structure

Bottomline: look for incomplete invariants of persistence modules that are:

- ▶ as strong as possible (μ stronger than ν if $\mu(M) = \mu(N) \Rightarrow \nu(M) = \nu(N)$)
- ▶ manageable to compute (polynomial time in the input filtration size)
- \blacktriangleright stable w.r.t. perturbations of the modules in the interleaving distance d_i
- ▶ interpretable in terms of the module's structure

Examples:

- ► dimension vector / Hilbert function
- ► rank invariant
- global rank function / generalized rank invariant
- ► graded Betti numbers

Bottomline: look for incomplete invariants of persistence modules that are:

- ▶ as strong as possible (μ stronger than ν if $\mu(M) = \mu(N) \Rightarrow \nu(M) = \nu(N)$)
- ▶ manageable to compute (polynomial time in the input filtration size)
- \blacktriangleright stable w.r.t. perturbations of the modules in the interleaving distance d_i
- ▶ interpretable in terms of the module's structure

Examples:

- ► dimension vector / Hilbert function
- rank invariant
- global rank function / generalized rank invariant
- graded Betti numbers

(rank invariant \mathbb{N} -decomposes on interval rank functions)

 $P = \llbracket 1, 3 \rrbracket^2 \subseteq (\mathbb{R}^2, \le)$

 $\operatorname{Rk} M \colon (s \leq t) \mapsto \operatorname{rank} [M_s \to M_t]$

(rank invariant is not complete)

 $P = \llbracket 1, 3 \rrbracket^2 \subseteq (\mathbb{R}^2, \leq)$

 $P = \llbracket 1, 3 \rrbracket^2 \subseteq (\mathbb{R}^2, \leq)$

Canonical basis for the rank invariant

 $\begin{array}{ll} \operatorname{Hook} / \operatorname{Upset:} & \text{for } s < t \in P \cup \{\infty\}, \\ \langle s, t \langle = \{u \in P \mid s \leq u \not\geq t\} \\ s^+ = \langle s, \infty \langle & & & & & \\ P = \mathbb{R}^2 & & s \end{array}$

Canonical basis for the rank invariant

Hook / **Upset**: for
$$s < t \in P \cup \{\infty\}$$
,
 $\langle s, t \rangle = \{u \in P \mid s \le u \not\ge t\}$
 $s^+ = \langle s, \infty \rangle$
 $P = \mathbb{R}^2$

Theorem ([Botnan, Oppermann, O.]): If P is finite or an upper semi-lattice, then

 $\left\{ \operatorname{Rk} \boldsymbol{k}_{\langle i,j \langle} \mid i < j \in P \cup \{\infty\} \right\}$

generates uniquely

{Rk $M \mid M : P \rightarrow \mathsf{vect}_k$ finitely presentable (fp)}

via projective resolutions relative to the rank-exact structure \mathcal{E}_{Rk} .

Let \mathcal{E}_{Rk} be the collection of short *rank-exact* sequences of pfd persistence modules:

 $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ s.t. $\operatorname{Rk} B = \operatorname{Rk} A + \operatorname{Rk} C$

Let \mathcal{E}_{Rk} be the collection of short *rank-exact* sequences of pfd persistence modules:

 $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0 \quad \text{s.t.} \quad \operatorname{Rk} B = \operatorname{Rk} A + \operatorname{Rk} C$

Proposition: (follows in part from [Auslander, Solberg])

- $\mathcal{E}_{\mathrm{Rk}}$ defines the structure of an exact category on $\mathsf{vect}_{m{k}}^P$
- \bullet the indecomposable projectives relative to $\mathcal{E}_{\rm Rk}$ are the hook modules
- P finite $\implies |\mathcal{E}_{Rk}|$ has enough projectives every $M \in \text{vect}_{k}^{P}$ has a finite projective resolution
- P upper semi-lattice \Longrightarrow $\Big| \mathcal{E}_{Rk}^{fp}$ has enough projectives every fp $M \in \text{Vect}_{k}^{P}$ has a finite projective resolution

Let \mathcal{E}_{Rk} be the collection of short *rank-exact* sequences of pfd persistence modules:

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$
 s.t. $\operatorname{Rk} B = \operatorname{Rk} A + \operatorname{Rk} C$
[B] = [A] + [C]
Corollary:

- P finite \Longrightarrow the $[\mathbf{k}_{\langle i,j \rangle}]$ for $i < j \in P \cup \{\infty\}$ generate $K_0(\mathcal{E}_{Rk})$
- P upper semi-lattice \implies the $[\mathbf{k}_{\langle i,j \rangle}]$ for $i < j \in P \cup \{\infty\}$ generate $K_0(\mathcal{E}_{Rk}^{fp})$

Given a finite rank-exact projective resolution M_{\bullet} of M:

$$[M] = \sum_{i=0}^{\infty} (-1)^{i} [M_{i}]$$

Let \mathcal{E}_{Rk} be the collection of short *rank-exact* sequences of pfd persistence modules:

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0 \quad \text{s.t.} \quad \operatorname{Rk} B = \operatorname{Rk} A + \operatorname{Rk} C$$
$$[B] = [A] + [C]$$
orollary:

- P finite \Longrightarrow the $[\mathbf{k}_{\langle i,j \rangle}]$ for $i < j \in P \cup \{\infty\}$ generate $K_0(\mathcal{E}_{Rk})$
- P upper semi-lattice \implies the $[\mathbf{k}_{\langle i,j \rangle}]$ for $i < j \in P \cup \{\infty\}$ generate $K_0(\mathcal{E}_{Rk}^{fp})$
- In both cases, the $[\mathbf{k}_{\langle i,j \rangle}]$ actually form a basis, and Rk defines a monomorphism of abelian groups $K_0(\mathcal{E}) \to \mathbb{Z}^{\mathrm{Seg}(P)}$

Application to graph classification

- ► various classification tasks on molecules and social network graphs
- ► 5-fold evaluation (80% train, 20% test)

Dataset	COX2	DHFR	IMDB-B	IMDB-M	MUTAG	PROTEINS
1-d barcode	76.0(4.1)	70.9(3.1)	54.0(1.9)	36.3(1.1)	79.2(7.7)	65.4(2.7)
MP-Kernel	79.9(1.8)	81.7(1.9)	68.2(1.2)	46.9(2.6)	86.1(5.2)	67.5(3.1)
MP-Landscapes	79.0(3.3)	79.5(2.3)	71.2(2.0)	46.2(2.3)	84.0(6.8)	65.8(3.3)
MP-Images	77.9(2.7)	80.2(2.2)	71.1(2.1)	46.7(2.7)	85.6(7.3)	67.3(3.5)
GRIL	79.8(2.9)	77.6(2.5)	65.2(2.6)	NA	87.8(4.2)	70.9(3.1)
Rank inv.	78.2(1.7)	79.9(2.1)	73.0(4.5)	49.1(1.6)	87.2(5.8)	70.2(2.1)
Rank decomp.	78.4(0.7)	78.7(1.7)	75.1(3.4)	51.1(1.3)	89.9(4.3)	73.9(1.7)
Baseline (10-fold)	80.1	81.5	74.3	52.4	92.1	76.3

More on homological invariants for TDA

- Framework: dim-Hom vs. homological invariants [Blanchette, Brüstle, Hanson] https://arxiv.org/abs/2112.07632
- Computation via Koszul complexes [Chacholski et al.] https://arxiv.org/abs/2209.05923
- Hilbert function: decomposition and stability [O., Scoccola] https://arxiv.org/abs/2112.11901
- Rank invariant: decomposition and stability [Botnan, Oppermann, O., Scoccola] https://arxiv.org/abs/2107.06800 https://arxiv.org/abs/2208.00300

Take-home message

Definition: An *additive invariant* is a map $\alpha \colon \text{Vect}_{\text{fp}}^{\mathbb{R}^d} \to A$, with A an Abelian group, such that $\alpha(M \oplus N) = \alpha(M) + \alpha(N)$ for all $M, N \in \text{Vect}_{\text{fp}}^{\mathbb{R}^d}$.

• Typical example (dim-Hom invariant): given a collection \mathcal{I} of intervals,

$$\alpha(-) := (\dim \operatorname{Hom}(\boldsymbol{k}_{I}, -))_{I \in \mathcal{I}} \in \mathbb{Z}^{\mathcal{I}}$$

 $(\mathcal{I} = \text{positive quadrants: Hilbert function})$

 $(\mathcal{I} = \text{hooks: dim ker invariant, or equivalently rank invariant})$

Definition: An *additive invariant* is a map $\alpha \colon \operatorname{Vect}_{\operatorname{fp}}^{\mathbb{R}^d} \to A$, with A an Abelian group, such that $\alpha(M \oplus N) = \alpha(M) + \alpha(N)$ for all $M, N \in \operatorname{Vect}_{\operatorname{fp}}^{\mathbb{R}^d}$.

• Typical example (dim-Hom invariant): given a collection \mathcal{I} of intervals,

 $\alpha(-) := (\dim \operatorname{Hom}(\boldsymbol{k}_{I}, -))_{I \in \mathcal{I}} \in \mathbb{Z}^{\mathcal{I}}$

► Let \mathcal{E}_{α} be the collection of short exact sequences $0 \to L \to M \to N \to 0$ on which α is additive (use the shorthand $\mathcal{E}_{\mathcal{I}}$ when $\alpha = (\dim \operatorname{Hom}(\mathbf{k}_{I}, -))_{I \in \mathcal{I}})$

Proposition: (follows from [Auslander, Solberg]) If \mathcal{I} contains all the up-sets, then:

- $\mathcal{E}_{\mathcal{I}}$ forms an exact structure on $\mathsf{Vect}_{\mathrm{fp}}^{\mathbb{R}^d}$
- the indecomposable projectives relative to $\mathcal{E}_\mathcal{I}$ are the $m{k}_I$ for $I\in\mathcal{I}$
- $\mathcal{E}_{\mathcal{I}}$ has enough projectives
 - ▶ can do homological algebra with $\mathcal{E}_{\mathcal{I}}$

Definition: An *additive invariant* is a map $\alpha \colon \text{Vect}_{\text{fp}}^{\mathbb{R}^d} \to A$, with A an Abelian group, such that $\alpha(M \oplus N) = \alpha(M) + \alpha(N)$ for all $M, N \in \text{Vect}_{\text{fp}}^{\mathbb{R}^d}$.

▶ Typical example (dim-Hom invariant): given a collection \mathcal{I} of intervals,

$$\alpha(-) := (\dim \operatorname{Hom}(\boldsymbol{k}_{I}, -))_{I \in \mathcal{I}} \in \mathbb{Z}^{\mathcal{I}}$$

► Let \mathcal{E}_{α} be the collection of short exact sequences $0 \to L \to M \to N \to 0$ on which α is additive (use the shorthand $\mathcal{E}_{\mathcal{I}}$ when $\alpha = (\dim \operatorname{Hom}(\mathbf{k}_{I}, -))_{I \in \mathcal{I}})$

▶ for every fp M that has a finite minimal $\mathcal{E}_{\mathcal{I}}$ -resolution $M_n \to \cdots \to M_0 \twoheadrightarrow M$, we get a canonical decomposition:

$$(\dim \operatorname{Hom}(\boldsymbol{k}_{I}, M))_{I \in \mathcal{I}} = \sum_{j \in \mathbb{N}} (-1)^{j} (\dim \operatorname{Hom}(M_{j}, M))_{I \in \mathcal{I}}$$
$$= \sum_{j \in 2\mathbb{N}} (\dim \operatorname{Hom}(M_{j}, M))_{I \in \mathcal{I}} - \sum_{j \in 2\mathbb{N}+1} (\dim \operatorname{Hom}(M_{j}, M))_{I \in \mathcal{I}}$$

23

• canonical signed barcode $(\beta_{2\mathbb{N}}^{\mathcal{I}}(M), \beta_{2\mathbb{N}+1}^{\mathcal{I}}(M))$ (with cancellable pairs)

Question: size of the decompositions / length of the resolutions?

► case $\mathcal{I} = \{\text{up-sets}\}$: gldim $\left(\text{Vect}_{\text{fp}}^{\mathbb{R}^d}\right) = d$ (Hilbert's Syzygy theorem)

Question: size of the decompositions / length of the resolutions?

► case $\mathcal{I} = \{\text{up-sets}\}$: gldim $\left(\text{Vect}_{\text{fp}}^{\mathbb{R}^d}\right) = d$ (Hilbert's Syzygy theorem)

► case $\mathcal{I} = \{\text{hooks}\}$:

gldim^{$\mathcal{E}_{\mathcal{I}}$} (Vect^{$\mathbb{R}^d$}) = 2d - 2 [Botnan, Oppermann, O., Scoccola]

Question: size of the decompositions / length of the resolutions?

- ► case $\mathcal{I} = \{\text{up-sets}\}$: gldim $\left(\text{Vect}_{\text{fp}}^{\mathbb{R}^d}\right) = d$ (Hilbert's Syzygy theorem)
- ► case $\mathcal{I} = \{\text{hooks}\}$: $\operatorname{gldim}^{\mathcal{E}_{\mathcal{I}}}\left(\operatorname{Vect}_{\operatorname{fp}}^{\mathbb{R}^d}\right) = 2d - 2$ [Botnan, Oppermann, O., Scoccola]
- ▶ more general cases: relate *E*_I to the usual exact structure on some alternative module category (hypothesis: ℝ^d replaced by some finite poset *P*):
 [Blanchette, Brüstle, Hanson] consider mod End_{kP} (*T*_I)^{op} where *T*_I = ⊕_{I∈I} k_I

add
$$(\{\boldsymbol{k}_{I} \mid I \in \mathcal{I}\}) \xrightarrow{\operatorname{Hom}_{\boldsymbol{k}P}(T_{\mathcal{I}}, -)} \operatorname{proj} (\operatorname{mod} \operatorname{End}_{\boldsymbol{k}P}(T_{\mathcal{I}})^{\operatorname{op}})$$

 $\Rightarrow \operatorname{gldim}^{\mathcal{E}_{\mathcal{I}}} (\operatorname{mod} \boldsymbol{k} P) \leq \operatorname{gldim} (\operatorname{mod} \operatorname{End}_{\boldsymbol{k} P}(T_{\mathcal{I}})^{\operatorname{op}})$